
file-types Manual
Max Rottenkolber

Sunday, 26 July 2015

Table of Contents

1 Using file-types 1

2 Extending the type and name databases 2

1 Using file-types

file-types is a simplistic approach to identify types of files based on their
names (e.g. no magic numbers like UNIX’s file(1)). It exposes a way
to find the common MIME type of a file but also comes with a novel file
tag system.

file-mime may be used to get the MIME type for a file e.g.:

(file-mime #P"foo.sh") ⇒ ("application" "x-sh")

file-tags on the other hand exposes access to the file tagging sys-
tem. When invoked with a single filename argument it will return a list
of keywords, each being an increasingly specific description of the file’s
type. If invoked with a keyword as the second parameter, file-tags will
act as a predicate to test if the file has the tag designated by the supplied
keyword.

(file-tags #P"test.lisp") ⇒ (:TEXT :COMMON-LISP)

(file-tags #P"Makefile") ⇒ (:TEXT :MAKE-FILE)

(and (file-tags #P"test.lisp" :text)

(file-tags #P"Makefile" :text))

⇒ true

Example of using file-tags.

1



2 Extending the type and name databases

The file-types database is created at compile time. It is sourced from
two Lisp files—types.lisp and names.lisp. The former contains a
special parameter variable *file-type-list* which stores a list of
pathname-type to file tag and MIME type assignments. In specific, file-
names whose pathname-type are equalp to one of the pathname-type

strings in an assignment will inherit the tags and MIME type of that
assignment.

(defparameter *file-type-list*

'(;; Text files

(("txt") ; List of PATHNAME-TYPEs.

:tags (:text) ; Tags.

:mime ("text" "plain")))) ; MIME type as returned by FILE-MIME.

Example of a exemplary types.lisp.

Now the file tag definition format has one special rule: Multiple as-
signments to a single type are valid and the specified tags will be ap-
pended in the database (MIME types will be superseded). Consider an
exended version of the example above.

2



(defparameter *file-type-list* '(

;; Text file class

(("txt" "lisp" "asd" "html" "htm")

:tags (:text)

:mime ("text" "plain"))

;; HTML file class

(("html" "htm")

:tags (:hyper-text-markup-language)

:mime ("text" "html"))

;; Lisp file class

(("lisp" "asd")

:tags (:common-lisp))

;; ASDF file class

(("asd")

:tags (:asdf-system-definition))

))

Using type classes.

We specify a set of pathname-types to designate plain text files. Fur-
ther down we specialize on some of those types. For instance, html and
htm get assigned their tag :hyper-text-markup-language and their cor-
rect MIME type. Then we define lisp and asd to be :common-lisp files
but let them retain the plain text MIME type. Then we fan out further
among the lisp files and append the asdf-system-definition tag to the
asd type.

"txt" ("text" "plain") (:TEXT)

"lisp" ("text" "plain") (:TEXT :COMMON-LISP)

"asd" ("text" "plain") (:TEXT :COMMON-LISP :ASDF-SYSTEM-DEFINITION)

"html" ("text" "html") (:TEXT :HYPER-TEXT-MARKUP-LANGUAGE)

"htm" ("text" "html") (:TEXT :HYPER-TEXT-MARKUP-LANGUAGE)

The resulting database.

The second file is name.lisp. It contains the special parameter vari-
able *file-name-list* which stores simple euqalp mappings from

3



pathname-names to pathname-types. Some types of files share a conven-
tional name but have no type suffix—for instance consider Makefiles.
In this case file-types will try to match the pathname-name against the
names in names.lisp and if successful continue with the type recom-
mended.

(defparameter *file-name-list*

'(;; Conventions

("README" "txt")

("Makefile" "mk")

;; Init files

(".emacs" "el")

(".clisprc" "lisp")

(".sbclrc" "lisp")))

Exemplary contents of names.lisp.

4


