
MPC Manual
Max Rottenkolber

Sunday, 26 July 2015

Table of Contents

1 Abstract 1

2 A brief practical example 1

3 run: Main entry point. 2

4 Primitive parsers and combinators 2

5 =let*: Syntax for lispers 3

6 Error handling 3

7 More combinators 4

8 Parsers for character input 4

9 Parsers for numerals 4

1 Abstract

MPC is a monadic parser combinators library. It provides a toolbox
of predefined parsers, facilities for error handling and parses arrays,
streams and lists.

This manual summarizes the exported functions of the packages mpc,
mpc.characters, and mpc.numerals. Refer to the MPC API (api.html)
for detailed descriptions of all exported symbols. To learn more about
MPC’s internals and monadic parser combinators in general read Drew
Crampsie’s parser combinators tutorial (https://github.com/drewc/smug/
blob/master/smug.org).

1

2 A brief practical example

Assuming you want to parse an email address in the form of
<user>@<host>. Let’s start by defining our package:

(defpackage simple-address

(:use :cl :mpc :mpc.characters))

(in-package :simple-address)

Next we restrict the allowed characters in the user and host fields:

(defun =address-character ()

(=or (=satisfies #'alphanumericp)

(=one-of '(#\- #_ #\. #\+))))

That is: Alphanumeric characters or any one of the dash, underscore, perioid and
plus chracters. Note how we use Common Lisp’s alphanumericp.

Finally we use =address-character to implement a simple address
parser:

(defun =simple-address ()

(=let* ((user (=string-of (=address-character)))

(_ (=character #\@))

(host (=string-of (=address-character))))

(=result (list user host))))

The _ binding in the =let* bindings is used to ignore the @ seperator. We return
a list containing the user and host strings using =result.

We can now apply our grammar using run:

(run (=simple-address) "foo@example.com")

⇒ ("foo" "example.com")

(run (=simple-address) "!!!@@@.com")

⇒ NIL

2

3 run: Main entry point.

run is the main entry point to MPC and has to be used to run a
parser against an input-source. The input-source can be of type array,
file-stream or list. Because MPC supports non-deterministic parsers
which can return multiple results, run accepts a keyword parameter re-
sult, a function used to select the desired return value. By default run

returns only the first result’s value.

4 Primitive parsers and combinators

The core of MPC is made up of primitive parsers and combinators. A
parser is a function that accepts an input source and returns a list of
pairs containing the result and the remaining input if it is successful
and nil othwerise to signal its failure to parent parsers. A combinator is
a function which returns a parser. For consistency primitive parsers are
defined as combinators that that always return the primitive parser.

=item is used to pop off an item from the input. It fails if the input is
empty. =result always succeeds with a given value without consuming
input. It is used to return arbitrary values from a parser. To check for end
of input there is =end-of-input which succeeds only when the input is
empty.

The primitive combinator =bind permits applying parsers in se-
quence and offers a way to access their intermediate results. =plus lets us
combine parsers in a non-deterministic way while =or and =and are de-
terministic alternatives. =if allows for conditional application of parsers.

5 =let*: Syntax for lispers

The =let* macro offers a lispy syntax for =bind. It binds the results of
a sequence of parsers to variables and unless any parser fails runs the
body parsers. It also understands the special symbol _ (underscore) to
signify ignorable bindings, where ignorable means that no symbol shall
be bound to the value of a given parser (=let* nevertheless requires the
parser to succeed).

The syntax of =let* is as follows:

(=let* ((symbol parser)*) parser*)

3

6 Error handling

=fail simply always fails. It optionally accepts expressions to
be evaluated at failure. Those expressions are permitted to call
get-input-position, which can be used to determine where a failure
occurred.

Two other error handling facilities =handler-case

and =restart-case do what their names suggest. Instead of forms to
be evaluated, every case clause accepts parsers to be run.

7 More combinators

=when and =unless behave like =if with an implicit progn and no else
clause. Just like when and unless in Common Lisp.

=not takes one parser and, if it would fail, consumes and returns the
next item from input.

=prog1 and =prog2 behave like =and but return the result of the first
or second parser respectively. =maybe applies a parser and succeeds even
if the parser fails. =list also behaves like =and but collects all results in
a list.

=satisfies applies (=item) but only succeeds when the result re-
turned by (=item) satisfies a given predicate. =eql, =one-of, =none-of
and =range are like =satisfies but require the result returned by
(=item) to be eql to a given value, eql to one or none of the values
in a given list or to be inside a range defined by a predicate and a lower
and upper bound respectively.

=one-or-more, =zero-or-more, =one-to, =zero-to, =at-least and
=exactly do as their names suggest and apply parsers multiple times
in various variants.

=funcall applies a parser and returns the result of a given function
called on the parsers result.

8 Parsers for character input

=character behaves like =eql but uses char= instead of eql. =string is
similar too as it parses a given string or fails. =string-of parses a string
of characters parsed by a given parser.

4

=whitespace and =skip-whitespace parse or skip characters com-
monly considered as whitespace respectively. =newline parses the new-
line character and =line parses a string of characters terminated by new-
line or end of input.

9 Parsers for numerals

=digit parses a number from a digit character. =natural-number and
=integer-number both parse numbers from numeral strings while the
latter also understands a leading dash for negativity. All three parses
accept an optional radix argument.

5

