
Exploring distributed designs with
Erlangen: Kademlia

Max Rottenkolber <max@mr.gy>

Friday, 23 June 2017

Common Lisp is known to lend itself to rapid prototyping,
and Erlangen (https://github.com/eugeneia/erlangen) intends to extend
these capabilities towards the domain of distributed systems. This
article documents an exploration of distributed hash tables (https:/
/en.wikipedia.org/wiki/Distributed_hash_table), specifically the Kademlia
(http://www.scs.stanford.edu/~dm/home/papers/kpos.pdf) paper, using Er-
langen.

In an attempt to “boldly go where no one has gone before” (not me
at least), I present mesh-table (https://github.com/eugeneia/erlangen/blob/

mesh-table/platform/mesh-table.lisp), a distributed hash table design that
retains the topology based on the XOR metric pioneered by Kademlia,
but otherwise deviates in its goals and implementation. While Kademlia
describes a homogeneous peer-to-peer overlay network for exchange of

1



transient data between peers in an untrusted network, mesh-table aims
to facilitate storage and retrieval of long-lived, immutable data in a net-
work of dedicated storage and client nodes in a trusted network.

I cover what I perceive to be the core principles of the Kademlia
paper (the XOR metric and k-buckets), but go astray otherwise, often for
simplicity’s sake. Don’t expect particularly good ideas that are my own,
and by no means production quality code. I’ll just be toying around for
fun and insight.

Distance metric

Kademlia requires that nodes are assigned identifiers of the same size
as the keys used to identify stored values, and relies on the notion of
distance between two identifiers. The basic premise is that the value de-
noted by a key is stored on the node with the identifier closest to the key.
The distance between two identifiers is defined as their bit-wise XOR.

(defun distance (x y)

(logxor x y))

The distance function has some useful properties as a topological met-
ric. The distance between an identifier and itself is zero

(distance x x) = 0

and the distance between two distinct identifiers is positive:

(distance x y) > 0 if x 6= y

Furthermore, the distance function is symmetric,

∀ x, y : (distance x y) = (distance y x)

and unidirectional, meaning for any identifier there exists exactly one
identifier at any distance:

∀ x, y, z : (distance x y) 6= (distance x z) if x 6= y 6= z

You can imagine the distance metric as a circular railway with each
identifier being a train stop, and trains traveling in only one direction.
Using the distance function, a node can tell if another node is closer to
or further away from a given key, and determine which node is respon-
sible for the key.

2



Routes and buckets

Each Kademlia node maintains a set of routes that contain the identifiers
and contact details of other nodes, effectively forming an overlay network
(https://en.wikipedia.org/wiki/Overlay_network). Since our nodes are im-
plemented as Erlangen agents (http://mr.gy/blog/erlangen-intro.html), we
don’t need to deal with network protocols such as UDP, on which
Kademlia is traditionally layered upon. Instead, we can use the message
passing functionality provided by Erlangen as the underlying network.
Hence, our routes store a reference to an agent as the contact information
for another node.

Finally, we want to replace routes to nodes that have become inactive
with routes to nodes that have more recently contacted us, and so we
keep a timestamp with each route, to track when we last heard from the
node it points to.

(defstruct (route (:constructor route (id agent)))

id agent (ctime (get-internal-real-time)))

These routes form the edges of a partial mesh network of nodes. Just
as values are stored in the node closest to their key, the mesh is organized
in terms of the distance metric as well. We strive for a network topology
that enables efficient lookup and redundancy.

By comparing the identifier in a route to the identifier of the node we
can determine the length of the route. What does that mean, though?
After all, our distance metric is not related to geographic distance, or

3



any other “real” metric. Quite the opposite is true: our metric allows us
to create a virtual, spatial space in which we can arrange our nodes.

In this space, nodes keep many routes to nodes close to them, and
few routes to distant nodes. If a node receives a request for a given key,
and it has a route to a node closer to the key than itself, it forwards the
request via the route to the node closest to the key. We can see that a
request eventually reaches the closest node in the network, and that the
path is optimal with respect to the number of hops.

We implement this by sorting the routes of a node into a fixed num-
ber of buckets—one for each bit of the identifier—of equally limited ca-
pacity, but assign to them exponentially growing ranges of the identifier
space. For each 1 ≤ n ≤ keysize, where keysize is the number of bits
in an identifier, the respective bucket holds routes to nodes of distance
between 2n and 2n-1.

A bucket consists of a bound denoting its assigned range (previously
n), a free-counter to indicate how much capacity is left, and a list of
*replication* − free routes for 0 ≤ free ≤ *replication*. Also, let’s
define some of the global parameters of our network:

• *key-size*—the number of bits that comprise an identifier

4



• *replication*—a positive integer denoting the replication level
of our network (controls the number of routes kept by nodes, as
well as how many copies of each stored value we maintain)

(defstruct (bucket (:constructor bucket (&optional (bound *key-size*))))

bound (free *replication*) routes)

(defun bucket-key-p (bucket distance)

(< distance (expt 2 (bucket-bound bucket))))

(defun bucket-add (bucket route)

(push route (bucket-routes bucket))

(decf (bucket-free bucket)))

(defun bucket-delete (bucket route)

(setf #1=(bucket-routes bucket) (delete route #1#))

(incf (bucket-free bucket)))

You might notice that bucket-key-p doesn’t implement what I have
described, it checks against the upper bound of the bucket range only.
That’s because a node starts out with a single bucket initially, and then
allocates further buckets on demand. It keeps a list of buckets sorted by
increasing bound. The first bucket in that list keeps routes of distance
between 0 and 2n-1, with n being the bucket’s bound. Thus, the first
bucket contains all routes that don’t fall into any other bucket. To search
for a route’s bucket, we can iterate over the bucket list to find the first
bucket with an upper bound greater than the distance of the route.

A node also keeps a local mapping from keys to values, as well as a
ring of callbacks for outstanding requests, but more on that later.

(defstruct node

id (buckets (list (bucket))) values (requests (ring *response-backlog*)))

(defun find-bucket (key node)

(find-if (let ((distance (distance key (node-id node))))

(lambda (bucket)

(bucket-key-p bucket distance)))

(node-buckets node)))

When a new route is to be added to the node’s first bucket and that
bucket is full, the next lower bucket is split off the first bucket, and

5



put in front of the bucket list. This allocation strategy makes sense be-
cause—depending on the size of our mesh—the lower buckets are in-
creasingly unlikely to be populated, since they hold decreasingly smaller
ranges of the identifier space.

(defun split-bucket (node)

(let* ((bucket (first (node-buckets node)))

(new (bucket (1- (bucket-bound bucket)))))

(dolist (route (bucket-routes bucket))

(when (bucket-key-p new (distance (route-id route) (node-id node)))

(bucket-delete bucket route)

(bucket-add new route)))

(push new (node-buckets node))))

So, when is a bucket full? A bucket is full when its capacity is
reached, and none of its routes are stale. We consider a route stale once
its timestamp exceeds a network-global timeout parameter:

• *timeout*—the duration of route validity after the last contact
with the route’s node

(defun route-stale-p (route)

(> (- (get-internal-real-time) (route-ctime route))

*timeout*))

(defun bucket-delete-stale (bucket)

(let ((stale-route (find-if 'route-stale-p (bucket-routes bucket))))

(when stale-route

(bucket-delete bucket stale-route))))

With that out of the way, we can formalize how routes are added.
First, we find the bucket suitable for the new route, if it has spare capac-
ity, or a stale route can be deleted, we simply add the route. If it doesn’t
fit, we consider if the bucket in question is the first bucket, in which case
it can be split. If it’s not, we simply discard the new route—we’re already
well-connected at that distance. Otherwise, we split the first bucket to
make room for those close routes, and repeat the process.

6



(defun add-route (node route)

(let ((bucket (find-bucket (route-id route) node)))

(cond ((or (plusp (bucket-free bucket))

(bucket-delete-stale bucket))

(bucket-add bucket route))

((eq bucket (first (node-buckets node)))

(split-bucket node)

(add-route node route)))))

Whenever a node receives a message from another node it already
has a route to, it updates that route’s contact information (in case it
has changed) and timestamp (preventing it from becoming stale). If the
message is from a previously uncontacted node, a new route is added
instead. The update-route function below also acts as a predicate that
tests whether a matching route exists, and only returns true when such
a route was updated.

(defun update-route (node id agent)

(find-if (lambda (route)

(when (= (route-id route) id)

(setf (route-agent route) agent

(route-ctime route) (get-internal-real-time))))

(bucket-routes (find-bucket id node))))

Finally, we need to be able to find routes to nodes closest to a given
identifier. To that end, we sort our routes by distance to said identi-
fier—in descending order because we will select the n best routes using
last (http://mr.gy/ansi-common-lisp/last.html). I know, horribly inefficient,
but it’s a simple and correct implementation, and that’s all we need right
now.

(defun find-routes (key node)

(sort (loop for bucket in (node-buckets node)

append (bucket-routes bucket))

'> :key (lambda (route)

(distance (route-id route) key))))

Callback rings

We previously defined a node to have a “ring” of callbacks—what’s that
about? During their lifetime, nodes send requests to other nodes, and

7



when they do, they include a unique sequence number with each re-
quest. When a node responds to a request, it includes the request’s se-
quence number in its reply. Via the sequence number, the requesting
node can associate the reply with one of its previous requests.

While most of our protocol is stateless, some parts of it do require
us to keep track. Specifically, we sometimes need to remember actions
to take if one of our previous requests is eventually met with a reply.
These actions are stored as closures in a callback ring, and are executed
when a reply to the outstanding request associated with the callback is
received.

A node’s request ring consists of a sequence counter, as well as a buffer
of callbacks for a fixed number of requests.

• *response-backlog*—the number of callbacks for outstanding
requests we keep track of

The request ring is implemented as a ring-buffer of virtually unlim-
ited capacity, which overwrites old elements when it wraps around its
actual size. Its access function makes sure to return nil instead of the
elements that have been overwritten.

8



(defstruct ring

(sequence 0) buffer)

(defun ring (size)

(make-ring :buffer (make-array size :initial-element nil)))

(defun ring-position (ring sequence)

(mod sequence (length (ring-buffer ring))))

(defun ring-push (ring value)

(prog1 #1=(ring-sequence ring)

(setf (aref (ring-buffer ring) (ring-position ring #1#)) value)

(incf #1#)))

(defun exceeds-ring-p (ring sequence)

(> (- (ring-sequence ring) sequence) (length (ring-buffer ring))))

(defun ring-get (ring sequence)

(unless (exceeds-ring-p ring sequence)

(aref (ring-buffer ring) (ring-position ring sequence))))

(defun ring-delete (ring sequence)

(unless (exceeds-ring-p ring sequence)

(setf (aref (ring-buffer ring) (ring-position ring sequence)) nil)))

The ring data structure has some very desirable properties, as well
as a few questionable trade-offs. The callback ring is of fixed size, thus
we avoid the risk of overflow due to excessive outstanding requests.
Additionally, we forgo complicated timeout handling, the timeout for
outstanding requests is implicitly adjusted relative to the load of the
system. The node discards a callback (effectively a timeout of the re-
quest) only when it needs to reclaim its buffer slot for a new request.
Hence, the effective timeout duration of requests decreases with the re-
quest throughput of a node (high load).

9



One glaring trade-off is the node’s implied behavior on excessive
load. When requests are issued so quickly in succession that the call-
back ring wraps around before a responding node can reply, the ensuing
replies are ignored, and no progress is made. Thus, it is up to the client
to detect backpressure, and throttle accordingly.

It is noteworthy how this scheme affects the generational garbage col-
lector. On a system with low load, callbacks can be retained much longer
than technically required, possibly causing them to be tenured (http://
ccl.clozure.com/docs/ccl.html#ephemeral-gc) into an old generation. While
this increases GC pressure, I conjecture that this phenomenon is actually
amortized, since it is unlikely to occur on medium to high loads—where
the additional pressure would actually hurt us.

Importantly, the value of *response-backlog* must be chosen delib-
erately with these properties in mind, as it governs both the effective
timeout duration and the peak congestion of the system.

Protocol messages

Our nodes communicate by exchanging and routing messages through
the mesh. Usually, this would be the time when we define a wire en-
coding, but Erlangen does that for us already, so we can simply define
structure classes to represent our messages. Each message contains some
metadata to facilitate routing, namely the sender’s node and agent iden-
tifiers, in addition to the parameters specific to a particular message
type.

• *node*—special variable bound to the node’s state, a node

structure

10



Furthermore, messages are divided into requests and replies. Us-
ing defstruct (http://mr.gy/ansi-common-lisp/defstruct.html)’s :include op-
tion—which amounts to single-inheritance—we define our different
types of messages in a type hierarchy. All types of requests and replies
are of type message, but the types request and reply are disjoint.

message

request reply

discover-request get-request … discover-reply get-reply …

Requests are treated specially because they are subject to being for-
warded to increasingly closer nodes before reaching their final desti-
nation. They feature two extra flags: forward-p and trace-p. The former
is used for explicit replication by inhibiting forwarding, effectively pre-
venting the receiver from delegating the request. The latter is a debug-
ging feature that allows us to trace how requests travel through the
mesh. Replies to requests are always sent directly to the node that origi-
nally issued it.

(defstruct message

(id (and *node* (node-id *node*))) (agent (agent)) sequence)

(defstruct (request (:include message))

(forward-p t) trace-p)

(defstruct (reply (:include message)))

The semantics for each type of request are expressed as a handle

method on the respective type. As mentioned before, nodes shall update
or add routes to nodes they are contacted by. To implement this we
use CLOS Method Combination to add a :before method to handle

that does just this. Note that since this method is specified on the type
message, it is also run when we handle replies.

The body of the method is straightforward: we update the route to
the requesting node unless it doesn’t already exist, in which case we
add a new route. There is one peculiarity though: some messages won’t
have a node identifier, namely the ones issued by client nodes that don’t

11



want to become part of the storage mesh. Client nodes send anonymous
requests, and are not interned into the routing tables of other nodes.

(defmethod handle :before ((message message))

(with-slots (id agent) message

(when id

(or (update-route *node* id agent)

(add-route *node* (route id agent))))))

To help nodes deal with replies we define a function, reply-bind,
which assigns a unique sequence number to a request to be issued, and
optionally stores a function in the node’s callback ring under that se-
quence number. The callback function can then call finalize-request
to delete itself, signaling that the request is completed, and preventing
further replies to the same request from being accepted. Finally, we de-
fine a handle method on the reply type to call a respective callback
function if applicable.

(defun reply-bind (request &optional callback-function)

(setf (message-sequence request)

(ring-push (node-requests *node*) callback-function))

request)

(defun finalize-request (reply)

(ring-delete (node-requests *node*) (message-sequence reply)))

(defmethod handle ((reply reply))

(let ((callback (when #1=(message-sequence reply)

(ring-get (node-requests *node*) #1#))))

(when callback

(funcall callback reply))))

Before a request is answered with a reply, it is usually routed for-
ward through the mesh until it arrives at the node responsible for it.
Forwarding also plays a role in replication, when a request is forwarded
to a set of neighbors to solicit redundancy. For that purpose we define a
function, forward, which sends a request via a list of routes, logging the
event when tracing is enabled.

12



(defun forward (request routes)

(dolist (route routes routes)

(when (request-trace-p request)

(write-log `(:forward ,request ,route)))

(send request (route-agent route))))

When a request has reached its final destination, the respective node
responds with a message of type reply, which includes the request’s
sequence number. The respond function takes a reply and a request, sets
the sequence number of the reply accordingly, and sends it to the agent
that initiated the request. When the trace-p flag of the request is true, the
reply is logged.

(defun respond (reply request)

(setf (message-sequence reply) (message-sequence request))

(when (request-trace-p request)

(write-log `(:respond ,request ,reply)))

(send reply (message-agent request)))

We also define a function, replicate-request, which creates a copy
(or replica) of a request, but overwrites its metadata. It also accepts two
optional parameters: id and forward-p. The id parameter sets the node
identifier slot of the created replica, and defaults to the calling node’s
identifier. Client nodes use this parameter to create anonymous requests
by supplying false. The forward-p parameter sets the forward-p flag in
the replicated request, and defaults to true. It is used by storage nodes
to explicitly solicit replication, and when they do so they ensure the
redundant request isn’t routed by supplying false.

(defun replicate-request (request &key (id (node-id *node*)) (forward-p t))

(let ((replica (copy-structure request)))

(setf (message-id replica) id

(message-agent replica) (agent)

(message-sequence replica) nil

(request-forward-p replica) forward-p)

replica))

Finally, we define structures for our set of protocol messages. These
are going to be instantiated, as opposed to the previous abstract struc-
ture types. Each of these structures is a subtype of either request or
reply, and may contain one or more additional slots based on the mes-
sage’s semantics. These messages include request/reply pairs for discov-

13



ering new nodes, as well as retrieving, storing, and deleting key/value
pairs from the mesh.

(defstruct (discover-request (:include request)) key)

(defstruct (discover-reply (:include reply)))

A request of type discover-request includes an extra slot, key, which
holds an identifier close to the nodes to be discovered. It is answered
with a reply of type discover-reply, which has no additional slots (the
desired information, namely the identifier and agent of the replying
node, is already inherited from the message type).

(defstruct (get-request (:include request)) key)

(defstruct (get-reply (:include reply)) value)

A request of type get-request includes an extra slot, key, which
holds an identifier used as the key of a value to be retrieved. It is an-
swered with a reply of type get-reply, which includes an extra slot
value that holds the value associated with the specified key.

(defstruct (put-request (:include request)) key value)

(defstruct (put-reply (:include reply)))

A request of type put-request includes two extra slots, key and value,
which holds an identifier used as a key and a value to be associated with
that key. It is answered with a reply of type put-reply, which merely
signifies acknowledgment of the request, and thus has no additional
slots.

(defstruct (delete-request (:include request)) key)

(defstruct (delete-reply (:include reply)))

Finally, a request of type delete-request includes an extra slot, key,
which holds an identifier used as a key associated with the value to be
deleted. It is answered with a reply of type delete-reply, which merely
signifies acknowledgment of the request, and thus has no additional
slots.

Pluggable stores

By default we use Common Lisp’s built-in hash tables (http://mr.gy/ansi-

common-lisp/Hash-Tables.html#Hash-Tables) to store key/value pairs in

14



nodes. This suffices for initial testing and experimentation, but eventu-
ally we want to use a persistent storage backend. To that end, we wrap
our hash table accesses in methods, implicitly defining a set of generic
functions that represent an abstract storage interface.

(defmethod values-get ((values hash-table) key)

(gethash key values))

(defmethod values-put ((values hash-table) key value)

(setf (gethash key values) value))

(defmethod values-delete ((values hash-table) key)

(remhash key values))

By implementing methods for the generic functions values-get,
values-put, and values-delete, which specialize on the values param-
eter (the store object), we can plug-in alternative storage back-ends later
on.

Protocol logic

A central operation during routing is for one node to determine the next
hop, if any, for a given request. We define a function, routes, to be called
by a node to find any routes to nodes closer to a given identifier than
itself. It accepts a node identifier of the node that initiated the request,
and the target identifier of the request (which might be an identifier
associated with a value or node), and returns no more than a specified
number of relevant routes. By default, up to one route is returned, which
will be the best route, if any.

It uses find-routes to get a list of all of the calling node’s routes
sorted by distance to the target identifier, and removes from that list all
routes that either lead to the node from which the request originated (to
prevent routing cycles), are stale, or lead to nodes farther away from the
target identifier than the calling node itself. When the calling node has
no routes to closer nodes (meaning that it is the closest node), routes
returns nil.

15



(defun routes (from to &key (limit 1))

(let ((own-distance (distance (node-id *node*) to)))

(last (delete-if (lambda (route)

(or (eql (route-id route) from)

(route-stale-p route)

(<= own-distance (distance (route-id route) to))))

(find-routes to *node*))

limit)))

A similar function neighbors takes a target identifier, and returns n
routes closest to the identifier, where n defaults to *replication*. An
optional boolean parameter controls whether stale routes are excluded.

(defun neighbors (key &key include-stale-p (limit *replication*))

(last (if include-stale-p

#1=(find-routes key *node*)

(delete-if 'route-stale-p #1#))

limit))

In order to discover routes to other nodes, and to option-
ally announce their own existence, nodes send messages of type
discover-request. The discover function sends a discover request to its
neighbors closest to the identifier key. It includes stale routes to eventu-
ally reestablish connectivity between temporarily partitioned nodes. The
request includes the origin’s identity when announce-p is true, effectively
announcing its existence to the receiving nodes.

(defun discover (key &optional announce-p)

(forward (if announce-p

(make-discover-request :key key)

(make-discover-request :key key :id nil))

(neighbors key :include-stale-p t)))

A node receiving a discover request responds with a message includ-
ing its identity of type discover-reply, thereby acknowledging its ex-
istence. It then forwards the request via up to *replication* routes to
nodes closer to the request’s key identifier.

(defmethod handle ((request discover-request))

(with-slots (id key) request

(respond (make-discover-reply) request)

(forward request (routes id key :limit *replication*))))

16



Discover requests are redundantly routed through the mesh until they
reach the node closest to its target. In the process, the request initiator
discovers routes to the closest node, and any node along the path the
request was routed through. Storage nodes also announce themselves
via discover requests, inserting themselves into the mesh by adding or
updating routes to themselves. The level of redundancy is controlled by
the network-global *replication* parameter.

Discover request routed through a mesh of ten nodes with *replication* = 2.

The structure of the mesh (see “Routes and buckets”) implies that
the paths taken by discover requests are likely to be the shortest in terms
of the routes available to all nodes, and the number of hops needed to
reach a destination does not increase significantly with the size of the
identifier space or the size of the network.

To retrieve the value associated with an identifier, nodes send mes-
sages of type get-request. The handling node forwards the request to
the node closest to the requested key it knows about unless it has no such
route (meaning it is the closest node), or forwarding is explicitly forbid-
den (i.e. the forward-p flag is false). Once a node is unable to forward a
get request, it attempts to retrieve the requested value, and, if successful,
responds to the initiating node with a message of type get-reply.

If a node can’t satisfy the request because it doesn’t have the re-
quested value, and forward-p is true, it replicates the request, sets its

17



forward-p flag to false, and forwards it to its neighbors closest to the
value’s key. When any of the neighbors replies with the value, the node
copies it into its own store before replying to the original request with
the retrieved value.

(defmethod handle ((request get-request))

(with-slots (id key forward-p) request

(unless (and forward-p (forward request (routes id key)))

(multiple-value-bind (value exists-p)

(values-get #1=(node-values *node*) key)

(cond (exists-p

(respond #2=(make-get-reply :value value) request))

(forward-p

(forward (reply-bind (replicate-request request :forward-p nil)

(lambda (reply)

(with-slots (value) reply

(values-put #1# key value)

(respond #2# request))

(finalize-request reply)))

(neighbors key))))))))

The last phase represents somewhat of a failover. If a node can’t sat-
isfy a get request, which it presumably should be able to handle, it calls
out to its peers for help as a last resort. Since it will copy any value
retrieved this way into its own store, this behavior has a regenerating
effect. When a new node joins the mesh, for instance, its store might be
empty, but it will receive the subset of get requests closest to its iden-
tifier. By calling out to the closest neighbors, of which one must have
been responsible for the key before the new node entered the mesh, it
will over time accumulate all the values it is responsible for.

18



Unsuccessful get request routed through a mesh of ten nodes with
*replication* = 2. The request is replicated at the destination because no value
associated with the key is present.

Because of how the mesh is structured, the handling node should be
in a good position to coordinate with the next closest nodes. It is more
likely than any other node to have routes to any nodes that store values
for keys close to its identifier.

In order to store values in the mesh, nodes send messages of type
put-request that contain the key identifier and the value to be associ-
ated with it. Put requests are forwarded through the mesh just like get
requests are. Finally, the handling node records the key/value pair, and
additionally replicates the requests to its neighbors closest to the key.

(defmethod handle ((request put-request))

(unless (and forward-p (forward request (routes id key)))

(values-put (node-values *node*) key value)

(respond (make-put-reply) request)

(when forward-p

(forward (replicate-request request :forward-p nil)

(neighbors key)))))

By forwarding copies of the request, the handling node distributes
the key/value pair redundantly to its neighbors closest to the key. If all
goes well, a successful put requests leaves n+1 copies of the pair in the
mesh, where n = *replication*. Just as with get requests, the handling

19



node’s affinity to other nodes close to the key identifier ensures that it
will be able to replicate the value to relevant nodes.

Put request routed through a mesh of ten nodes with *replication* = 2. The
request is replicated at the destination to store the value redundantly.

Finally, nodes can delete values associated with a key by issuing mes-
sages of type delete-request. It works almost exactly like a put request,
except that it removes key/value pairs from a node’s records.

(defmethod handle ((request delete-request))

(with-slots (id key forward-p) request

(unless (and forward-p (forward request (routes id key)))

(values-delete (node-values *node*) key)

(respond (make-delete-reply) request)

(when forward-p

(forward (replicate-request request :forward-p nil)

(neighbors key))))))

Since routes become stale over time, a period of low or no traffic
might leave a node without fresh routes. To avoid this situation, nodes
periodically refresh buckets that are not full or contain stale routes. A
bucket is refreshed by performing discover requests on a random identi-
fier that falls within that bucket.

20



The function refresh-routes performs the procedure outlined
above. It accepts a boolean parameter announce-p that controls whether
the calling node should announce itself to its peers.

The inner workings of refresh-routes are a bit tricky. Remember
that the first bucket contains all routes that don’t fall into any other
bucket, so the first bucket spans the range of identifiers starting at dis-
tance d = 1 (the identifier at distance d = 0 is the node’s own identifier).
For each bucket to refresh, we generate a random distance within its
range, and attempt to discover the node with the identifier at that dis-
tance.

Remember that our distance function is unidirectional: for any identi-
fier there exists exactly one identifier at any distance. Since our distance
function is defined as XOR, which is reversible, the following holds true

(distance x y) = d→ (distance x d) = y

and we can obtain an identifier within the bucket by computing the
distance between the calling node’s identifier and the distance selected
at random.

(defun refresh-routes (&optional announce-p)

(loop for bucket in (node-buckets *node*)

for start = 1 then end

for end = (expt 2 (bucket-bound bucket))

do (when (or (plusp (bucket-free bucket))

(find-if 'route-stale-p (bucket-routes bucket)))

(discover (distance (+ start (random (- end start)))

(node-id *node*))

announce-p))))

When a node is first started it is supplied a set of initial peers. The
function initialize-node takes a list of identifier/agent pairs, and adds
a new route for each entry. It then performs discover requests on the
node’s own identifier using the initial routes. The optional parameter
announce-p controls whether the calling node should announce itself to
its peers.

(defun initialize-node (initial-peers &optional announce-p)

(loop for (id agent) in initial-peers do

(add-route *node* (route id agent)))

(discover (node-id *node*) announce-p))

In order to perform periodic actions (like refreshing routes in
our case) we need to keep track of time and time intervals.

21



For this we use get-internal-real-time (http://mr.gy/ansi-common-lisp/

get_002dinternal_002dreal_002dtime.html)1 to get a monotonic time (https:/
/www.softwariness.com/articles/monotonic-clocks-windows-and-

posix/). Monotonicity is important in this context because we care about
stable intervals specifically, and want them to be strictly dependent on
elapsed time—as opposed to global time. Get-internal-real-time re-
turns a time in “internal time units”, which can be converted to sec-
onds using the constant internal-time-units-per-second (http://mr.gy/ansi-

common-lisp/internal_002dtime_002dunits_002dper_002dsecond.html).
The function deadline accepts a timeout in internal time units, and

returns a deadline (a time in the future at which the timeout will be ex-
ceeded). Analogously, the function deadline-exceeded-p is a predicate
that accepts a deadline, and tests whether it is exceeded.

The function receive-until accepts a deadline, and waits to receive
a message until the deadline is exceeded. It returns either a message
received by the calling agent, or signals an error of type timeout if the
deadline was exceeded. It uses the function seconds-until-deadline

which returns the seconds left until a time in internal time units will
pass. Receive-until lets us multitask between handling incoming mes-
sages and performing our periodic duties on time by ensuring that we
don’t miss a deadline while we wait for incoming messages.

(defun deadline (timeout)

(+ (get-internal-real-time) timeout))

(defun deadline-exceeded-p (deadline)

(>= (get-internal-real-time) deadline))

(defun seconds-until-deadline (deadline)

(/ (max (- deadline (get-internal-real-time)) 0)

internal-time-units-per-second))

(defun receive-until (deadline)

(if (deadline-exceeded-p deadline)

(error 'timeout))

(receive :timeout (seconds-until-deadline deadline)))

• 1. At the time of writing CCL’s implementation of
get-internal-real-time is broken (https://github.com/Clozure/ccl/

issues/20). Erlangen includes a fixed version (https://github.com/

eugeneia/erlangen/blob/

b3c440d2104883893b82e3372a5447d4f55ca013/ccl.lisp#L26) of this

22



function for the meantime, at least for platforms other than
MS Windows.

Storage nodes and clients

Now we have assembled all the pieces needed to express the life cycle
of a node. The functions node and client, that implement the behavior
of a storage node and a client respectively, are intended to be used as
top-level functions for agents (i.e. as the first argument to spawn (http://
mr.gy/software/erlangen/api.html#section-1-14)).

A storage node is initialized with an identifier, a set of initial peers,
and a store object that maps keys to values. First, it binds *random-
state* (http://mr.gy/ansi-common-lisp/_002arandom_002dstate_002a.html)
to a fresh random state object that has been randomly initialized to get
its own independently seeded random source to generate random iden-
tifiers. It then binds the special variable *node* to a fresh node structure
which is initialized as follows: unless specified, the identifier is selected
at random using gen-id, and an empty hash table is used for storing
values.

Additionally, an interval at half of the duration of *timeout* is set,
to be used as the refresh deadline. The deadline is selected at halfway
to the expiry date of fresh routes, so that newly added routes can be
pinged at least once before they become stale. The first deadline is set
to expire after a random duration up to the interval in order to avoid
a thundering herd (https://en.wikipedia.org/wiki/Thundering_herd_problem)
situation.

The node then initializes routes to its initial peers, and announces
itself before entering its event loop. If a message is received before the
refresh deadline expires, it is processed according to protocol by handle.
When the refresh deadline is met, it is reset, and the node’s routes are
refreshed.

23



(defun gen-id ()

(random (expt 2 *key-size*)))

(defun node (&key id initial-peers values)

(let* ((*random-state* (make-random-state t))

(*node* (make-node :id (or id (gen-id))

:values (or values (make-hash-table))))

(refresh-interval (/ *timeout* 2))

(refresh-deadline (deadline (random refresh-interval))))

(initialize-node initial-peers :announce)

(loop do (handler-case (handle (receive-until refresh-deadline))

(timeout (refresh-deadline-exceeded)

(declare (ignore refresh-deadline-exceeded))

(setf refresh-deadline (deadline refresh-interval))

(refresh-routes :announce))))))

Clients behave very similar to storage nodes, except they always use
a randomly generated identifier, and do not use a store object. A client
doesn’t announce itself, and proxies incoming requests instead of han-
dling them. As such, it serves as a gateway into the mesh that can be
used by one or more agents.

The function proxy takes a request, and forwards an anonymous
replica of the request via its route to the node closest to the request
key. It installs a callback to handle the eventual response, which causes
the client to respond to the request issuer with the reply.

24



(defun proxy (request)

(forward (reply-bind (replicate-request request :id nil)

(lambda (reply)

(finalize-request reply)

(respond reply request)))

(neighbors (slot-value request 'key) :limit 1)))

(defun client (&key initial-peers)

(let* ((*random-state* (make-random-state t))

(*node* (make-node :id (gen-id)))

(refresh-interval (/ *timeout* 2))

(refresh-deadline (deadline (random refresh-interval))))

(initialize-node initial-peers)

(loop do (handler-case (let ((message (receive-until refresh-deadline)))

(etypecase message

((cons agent request) (proxy (cdr message)))

(reply (handle message))))

(timeout (refresh-deadline-exceeded)

(declare (ignore refresh-deadline-exceeded))

(setf refresh-deadline (deadline refresh-interval))

(refresh-routes))))))

If you are wondering why client accepts messages of the form
(agent . request) even though it never looks at the agent value, and sends
replies back to the agent noted in the request structure, wonder no more.
This way, clients implement the erlangen-plaform.server protocol, and
can be queried using cast and call.

Taking the mesh for a spin

Let’s go for a test drive. If you want to follow along, make sure to check
out the mesh-table branch, and load erlangen-platform. First, we de-
fine a fresh package to experiment in, with all the goodies we need.

25



(ql:quickload :erlangen-platform)

(defpackage mesh-table-user

(:use :cl

:erlangen

:erlangen-platform.log

:erlangen-platform.server

:erlangen-platform.mesh-table)

(:shadowing-import-from :erlangen-platform.server :call)

(:shadowing-import-from :erlangen-platform.mesh-table :node))

(in-package :mesh-table-user)

To bootstrap the mesh, we generate a random identifier, and use it to
spawn our first node—the root node. So far it’s a lone wolf, but at least
now we have an initial peer we can use to initialize further nodes with.

(defparameter *root-id* (gen-id))

(defparameter *root-node* (spawn `(node :id ,*root-id*)))

Now we can populate the mesh with a bunch of nodes. Initially, they
will only have one peer (the root node), but it won’t be long until they
discover each other.

(defparameter *nodes* ())

(dotimes (i 20)

(push (spawn `(node :initial-peers ((,*root-id* ,*root-node*))))

*nodes*))

26



On the left: the mesh (*replication* = 4) right after we spawned the majority
of nodes, the root node being clearly discernible. On the right: after a while,
nodes discover more relevant routes, and seldom used routes become stale
(dotted edges).

Of course we want to interact with the mesh, so let’s spawn a client
node, and put some data into the network. We generate a few random
keys, and call the client with put requests to insert some values. Each put
request yields a put reply acknowledging the operation.

27



(defparameter *client*

(spawn `(client :initial-peers ((,*root-id* ,*root-node*)))))

(defparameter *keys* (list (gen-id) (gen-id) (gen-id)))

(call *client* (make-put-request :key (first *keys*) :value 1))

→ #S(ERLANGEN-PLATFORM.MESH-TABLE::PUT-REPLY

:ID 293999586930477495619460952165128733173

:AGENT #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:NODE #x30200349411D>

:SEQUENCE NIL)

(call *client* (make-put-request :key (second *keys*) :value 2))

→ ...

(call *client* (make-put-request :key (third *keys*) :value 3))

→ ...

Traces of the three put requests being routed through the mesh.

28



To get more insight into what happens behind the scenes, we can
trace requests through the mesh. But first, we need to spawn a logging
agent to log the trace. We register the name :log for our logger, which
is the default destination for write-log (on top of which our tracing is
built on).

(register :log :agent (spawn 'logger))

With a log present, we can trace our requests using the :trace-p flag.
Let’s trace a get request, and see what happens. The client forwards the
request to the node closest to the key. Since the client just handled a put
request to the same key, it still has a direct route to the node closest to
the key, and that node happens to be final destination for the request.
The node responds with a get reply to the client, which then responds to
the caller.

29



(call *client* (make-get-request :key (first *keys*) :trace-p t))

B ("2017-05-24 13:00:57"

B #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:CLIENT #x3020034FAA5D> :FORWARD

B #S(ERLANGEN-PLATFORM.MESH-TABLE::GET-REQUEST

B :ID NIL

B :AGENT #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:CLIENT #x3020034FAA5D>

B :SEQUENCE 3

B :FORWARD-P T

B :TRACE-P T

B :KEY 155130510100689072426815715566014896677)

B #S(ERLANGEN-PLATFORM.MESH-TABLE::ROUTE

B :ID 132185931380890600385825626482768187951

B :AGENT #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:NODE #x30200349EB8D>

B :CTIME 1702536187961))

B ("2017-05-24 13:00:57"

B #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:NODE #x30200349EB8D> :RESPOND

B #S(ERLANGEN-PLATFORM.MESH-TABLE::GET-REQUEST

B :ID NIL

B :AGENT #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:CLIENT #x3020034FAA5D>

B :SEQUENCE 3

B :FORWARD-P T

B :TRACE-P T

B :KEY 155130510100689072426815715566014896677)

B #S(ERLANGEN-PLATFORM.MESH-TABLE::GET-REPLY

B :ID 132185931380890600385825626482768187951

B :AGENT #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:NODE #x30200349EB8D>

B :SEQUENCE NIL

B :VALUE 1))

B ("2017-05-24 13:00:57"

B #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:CLIENT #x3020034FAA5D> :RESPOND

B #S(ERLANGEN-PLATFORM.MESH-TABLE::GET-REQUEST

B :ID NIL

B :AGENT #<AGENT #x30200337635D>

B :SEQUENCE NIL

B :FORWARD-P T

B :TRACE-P T

B :KEY 155130510100689072426815715566014896677)

B #S(ERLANGEN-PLATFORM.MESH-TABLE::GET-REPLY

B :ID 132185931380890600385825626482768187951

B :AGENT #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:NODE #x30200349EB8D>

B :SEQUENCE NIL

B :VALUE 1))

→ #S(ERLANGEN-PLATFORM.MESH-TABLE::GET-REPLY

:ID 132185931380890600385825626482768187951

:AGENT #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:NODE #x30200349EB8D>

:SEQUENCE NIL

:VALUE 1)

30



So far so good, let’s kill half of our nodes to see how the mesh deals
with that. Imagine a whole data center burns down to the ground, and
no backups can be found. In distributed speak this situation is called a
partition, which implies that the nodes could come back up at a later
time, but in our case they won’t.

(dotimes (i 10)

(exit :kill (pop *nodes*)))

On the left: the mesh right after the disaster. On the right: routes to dead nodes
become stale, and the get request finds its way to a redundant node.

We can still make requests, but we might not get back a reply—half
of our mesh went dark after all. We can supply a timeout to call to give
an upper bound to the time we wait to a reply. The request might be
forwarded through a seemingly fine route, to a node that won’t reply no
matter what. After a while though, the routes to dead nodes will become
stale. A live node will take over, and chances are high that it will be able
to yield the correct value.

(call *client* (make-get-request :key (first *keys*))

:timeout 1)

→ #S(ERLANGEN-PLATFORM.MESH-TABLE::GET-REPLY

:ID 119982038210290876000818395666614461298

:AGENT #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:NODE #x3020034A570D>

:SEQUENCE NIL

:VALUE 1)

31



To make up for our losses, we spawn ten fresh nodes to take over.
New routes are established, and some stale routes are forgotten. Soon
enough the mesh will look just as healthy as it did before.

(dotimes (i 10)

(push (spawn `(node :initial-peers ((,*root-id* ,*root-node*))))

*nodes*))

On the left: the mesh right after we added the fresh nodes. On the right: a little
while later, a new node asks its neighbors for a record it should have.

Over time, the new nodes will even regenerate records previously
owned by now dead nodes. When a node receives a get request for a key
to which it is closest, but doesn’t have a value for the key, it forwards the
request to its neighbors with the forward-p flag set to false. If it gets a
reply it copies the value into its own store, and replies as if it had always
been present.

32



(call *client* (make-get-request :key (first *keys*) :trace-p t))

B ...

B ("2017-05-24 13:59:35"

B #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:NODE #x3020035127FD> :FORWARD

B #S(ERLANGEN-PLATFORM.MESH-TABLE::GET-REQUEST

B :ID 106415979122184563321987569594398713625

B :AGENT #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:NODE #x3020035127FD>

B :SEQUENCE 0

B :FORWARD-P NIL

B :TRACE-P T

B :KEY 155130510100689072426815715566014896677)

B #S(ERLANGEN-PLATFORM.MESH-TABLE::ROUTE

B :ID 411292742280498946490320458060617158

B :AGENT #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:NODE #x3020034933AD>

B :CTIME 1706058833487))

B ("2017-05-24 13:59:35"

B #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:NODE #x3020035127FD> :FORWARD

B #S(ERLANGEN-PLATFORM.MESH-TABLE::GET-REQUEST

B :ID 106415979122184563321987569594398713625

B :AGENT #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:NODE #x3020035127FD>

B :SEQUENCE 0

B :FORWARD-P NIL

B :TRACE-P T

B :KEY 155130510100689072426815715566014896677)

B #S(ERLANGEN-PLATFORM.MESH-TABLE::ROUTE

B :ID 43349484706135223247500409734337076500

B :AGENT #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:NODE #x30200352189D>

B :CTIME 1706033691806))

B ...

B ("2017-05-24 13:59:35"

B #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:NODE #x3020034A570D> :RESPOND

B #S(ERLANGEN-PLATFORM.MESH-TABLE::GET-REQUEST

B :ID 106415979122184563321987569594398713625

B :AGENT #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:NODE #x3020035127FD>

B :SEQUENCE 0

B :FORWARD-P NIL

B :TRACE-P T

B :KEY 155130510100689072426815715566014896677)

B #S(ERLANGEN-PLATFORM.MESH-TABLE::GET-REPLY

B :ID 119982038210290876000818395666614461298

B :AGENT #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:NODE #x3020034A570D>

B :SEQUENCE 0

B :VALUE 1))

B ...

→ #S(ERLANGEN-PLATFORM.MESH-TABLE::GET-REPLY

:ID 106415979122184563321987569594398713625

:AGENT #<AGENT ERLANGEN-PLATFORM.MESH-TABLE:NODE #x3020035127FD>

:SEQUENCE NIL

:VALUE 1)

33



That’s it for out little tour through the mesh. I hope I could show
some weaknesses (like reduced availability right after partition), and
some strengths (like effective durability) of the design. Most importantly,
I hope I could convince you of Common Lisp and Erlangen as a good
platform for developing distributed designs.

Appendix: graphing the mesh

You might have guessed that the visual graphs of meshes found
in this article were not created by hand. The mesh-table branch
comes with some extra code (https://github.com/eugeneia/erlangen/blob/

mesh-table/platform/mesh-table-graphviz.lisp) for rendering live mesh net-
works using Graphviz (http://graphviz.org/), specifically a DOT (https://
en.wikipedia.org/wiki/DOT_%28graph_description_language%29) emitter.

Identifiers are encoded in the color space, which can sometimes be
misleading, but gives a fairly accurate sense of distance most of the time.
Edge length and thickness also relate to the distance between two nodes
connected by a route. Additionally, it adds visual cues for stale routes,
dead nodes, and can even overlay request traces onto the graph.

Besides generating visual graphs for this article, the DOT emitter
also proved to be an invaluable debugging tool. Bugs that might other-
wise be subtle, become very prominent, if not obvious, when you can
see them affect the live system. In fact, as the visualization improved, I
found more and more bugs. I can’t stress enough, how (even more) em-
barrassingly bug ridden this article would’ve been, if the little graphviz

function hadn’t saved the day.

34


