2020

Max Rottenkolber <max@mr.gy>

Monday, 19 April 2021

What a year! It's been pretty quiet on this blog. However, I've been
busy and it can’t hurt to recap some of the things I did last year. Last
year actually started out with FOSDEM. Big crowd. Huge event. I gave
two talks, in person. Can you imagine?

RaptorJIT VM

At FOSDEM 2020 I gave a talk (https://archive.fosdem.org/2020/schedule/
event/raptorjit_lua/)
on the work done on Raptor]IT, and the goals and motivations of the
project. I also gave a more general talk at ELS 2020 (https://mr.gy/screen/
Later%20Binding%20ELS2020%20talk%20vide0c%202.mp4) on the workings,
benefits, and caveats of just-in-time compilation, using Lua]IT as an ex-
ample. That talk, Later Binding (LaterBinding.pdf), is also available in a
more detailed paper format.

A milestone was reached on the work of porting LuaJIT’s inter-
preter to C. After fixing a handful more bugs (https://github.com/eugeneia/

1

raptorjit/compare/f56b4db...9d61343) I managed to run the Snabb basicl
benchmark successfully using the new VM, and currently our new in-

terpreter passes almost two thirds of the Snabb test suite. Famous last
mile, huh?

Rush

Mostly to learn Rust, I ported Snabb (https://github.com/snabbco/snabb)
to Rust, and you can relive my experience doing so in a screencast
series I recorded while hacking on Rush (https://mr.gy/screen/rush). That
work turned out commercially viable, and I'm currently working with a
startup on network shaping tools based on Rush.

Embedded hacking

I also wanted to give Rust a spin for embedded hacking, and ended up
doing a couple projects around the STM32 bluepill and Waveshare e-ink
screens. I had to learn some very basic soldering—behold my first ever
solder, which I thought I botched but turned out to work fine:

My first solder

...and I also used a logic analyzer for the first time. A new form
of debugging for me which I enjoyed thoroughly! I ended up doing
an I Ching (https://en.wikipedia.org/wiki/l Ching) divination appliance,
that collects entropy by tuning two clock crystals on the STM32F103C8
against each other, and renders the resulting hexagram to a e-ink screen.

2

I Ching on E-Paper

Following Dmitry V. Sokolov’s Understandable RayTracing in
256 lines of bare C++ (https://github.com/ssloy/tinyraytracer/wiki/Part-1:-
understandable-raytracing) I hacked up a scruffy ray tracer. Mind you the
e-ink displays I was working with support just two colors, so I came up
with a dithering based approach.

Attempts at ray tracing

I then ported that ray tracer to the STM32F103C8 board, this time
using Mecrisp-Stellaris Forth, because I always wanted to do some
Forth hacking. That turned out to be quite the fun exercise given the
constraints of this particular micro-controller: 72 MHz core clock fre-

quency, 20 Kbytes of RAM, 128 Kbytes of ROM, and no FPU (https://
en.wikipedia.org/wiki/Floating-point__unit).

\ ’

STMB32 ray tracing

Forth was lots of fun. In some ways it is truly elegant, and fully
interactive given the compiler and interpreter run on the freakin’
micro-controller, snappy, even at 8 MHz. Below you can marvel at my
breakpoint-to-REPL debugger in six lines of Forth. Nevertheless, I feel I
saturated my hunger for Forth hacking for now.

false variable break-continue
: continue true break-continue ! ;

: break
cr ." Breakpoint hit"
cr begin cr query interpret ." ok." break-continue @ until

cr false break-continue ! ;

Forth breakpoint-to-REPL debugger

Designing a CPU, and an ISA, and an assembler,
and a compiler!
Continuing the hardware theme, I decided I wanted to learn Verilog and

what better way to learn than to design and implement your own tiny
CPU core and ISA?

Ram
l’ —‘ 3130 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0x0 (ALU) 0x8 (AND) 0 0 0 Orsm2 r_srcl r_dst
L5 CONTROLLER wscowmouer | | isaveue L 040 (ALU) 049 (OR) o] o o ohes c e g
00 (ALU) OxA (XOR) 0 0 0 Orsrc2 r_srcl r_dst
l 1 0x0 (ALU) 0OxB (NOT) 0 00 00 0 0 0 O Orsrcl r_dst
0x0 (ALU) 0x10 (MUL) 0 0 0 Orsrc2 r_srcl r_dst
cacHe oeace 0x1 (BRU) 0x0 (IMP) k16 000000
ox1 (BRU) Ox1 (INZ) k16 r_flag
T 0x1 (BRU) 0x2 (12) k16 r_flag
| ox1 (BRU) 0x3 (GE) k16 r_flag
0x1 (BRU) 0x4 (JG) k16 r_flag
0x1 (BRU) 05 (JE) k16 r_flag
L ox1 (BRU) 0x6 (INE) k16 r_flag
0x1 (BRU) OxA (IMPL) 0000000 0 0 Orsrcl 000000
0x1 (BRU) 0xB (CALL) 0000000 0 0 Orsrcl r_dst
ox1 (BRU) OxC (RET) 0 0 00000 0 0 Orsrcl 000000
I—;—; 0x2 (LSU) 0x0 (LD) k10 r_addr r_dst
0x2 (LSU) 0x1 (T) k10 r_srel r_addr
BRU; Ay LOADISTORE 0x2 (LSU) 0x2 (POP) 0 0 0 Orsrc2 0 0 0 0 0 Ordst
4 - 0x2 (LSU) 0x3 (PUSH) 0 0 0 Ors2 r_srcl 000000
0x2 (LSU) 0x4 (LDX) ka r_src2 r_addr r_dst
0x2 (LSU) 0x5 (STX) k4 r_sre2 r_srel r_addr

\—I—l

REGFILE

A fledgeling CPU architecture and ISA

While I think the ISA turned out OK, my first core design isn’t very
good as could be expected. I'll have to re-architect this one to get it to
synthesize on a real FPGA. It does however simulate fine in Verilator
already, and that’s good enough for quite a test drive.

And its already somewhat fully featured too, at least conceptually.
I made a branch predictor, instruction and data caches, an ALU, and a
load/store unit.

clk:
stall
addr[31:0]
in

idecodel
BT
raml

» regfilel

wire addr(31:0]
ire

offset[31:0]
wire pcl31:01
wire prefetch
wire read[31:01
wire stall

Debugging my puny branch predictor

To play with my core, I had to write an assembler for my brand
new ISA of course, but I didn’t stop there. Learning about SSA based
compilers was high on my bucket list, so I built my first compiler for a
subset of Lua targeting my fledgeling architecture.

Compilers are quite the rabbit hole! I ended up implementing func-
tion calls, call inlining, code folding, dead code elimination, structs and
arrays, and a simple compile-time type system. And while its still in a
very early stage of development, it kind of works nicely? I can compile
and assemble non-trivial programs, and correctly run them on my CPU
core under Verilator. How cool?

Below is a test program and its compiler output, just to show off. I
can’t wait to get back to hacking on this next time I can free up some
significant time!

function foo (a, b)
local sum = 0
for i = a, b do
sum = sum + i
end
if sum > 100 then
return bar (sum)
-- return -sum
else
return sum
end
end

function bar (x) return baz(x) end
function baz (x) return -x end
function main ()

return foo(1l, 100)
end

Non-trivial Lua program

k rO OGmain
jmpl rO0

Omain:
krlo0

k r2 100
kr31

krd 1

L1:

cmps r5 r2 r4
jge rb >L2
jmp >L3

L2:

add r1 r1 r4
add r4 r4 r3
jmp <L1

L3:

k r4 100
cmps r4 r4 rl
jge rd >L4
jmp >L5

L4:

mov r0 ri
ret r29

L5:

krd O

sub r0 r4 ri1
ret r29

Compiler output for our non-trivial Lua program

