
2020
Max Rottenkolber <max@mr.gy>

Monday, 19 April 2021

What a year! It’s been pretty quiet on this blog. However, I’ve been
busy and it can’t hurt to recap some of the things I did last year. Last
year actually started out with FOSDEM. Big crowd. Huge event. I gave
two talks, in person. Can you imagine?

RaptorJIT VM

At FOSDEM 2020 I gave a talk (https://archive.fosdem.org/2020/schedule/
event/raptorjit_lua/)
on the work done on RaptorJIT, and the goals and motivations of the
project. I also gave a more general talk at ELS 2020 (https://mr.gy/screen/
Later%20Binding%20ELS2020%20talk%20video%202.mp4) on the workings,
benefits, and caveats of just-in-time compilation, using LuaJIT as an ex-
ample. That talk, Later Binding (LaterBinding.pdf), is also available in a
more detailed paper format.

A milestone was reached on the work of porting LuaJIT’s inter-
preter to C. After fixing a handful more bugs (https://github.com/eugeneia/

1



raptorjit/compare/f56b4db...9d61343) I managed to run the Snabb basic1
benchmark successfully using the new VM, and currently our new in-
terpreter passes almost two thirds of the Snabb test suite. Famous last
mile, huh?

Rush

Mostly to learn Rust, I ported Snabb (https://github.com/snabbco/snabb)
to Rust, and you can relive my experience doing so in a screencast
series I recorded while hacking on Rush (https://mr.gy/screen/rush). That
work turned out commercially viable, and I’m currently working with a
startup on network shaping tools based on Rush.

Embedded hacking

I also wanted to give Rust a spin for embedded hacking, and ended up
doing a couple projects around the STM32 bluepill and Waveshare e-ink
screens. I had to learn some very basic soldering—behold my first ever
solder, which I thought I botched but turned out to work fine:

My first solder

. . . and I also used a logic analyzer for the first time. A new form
of debugging for me which I enjoyed thoroughly! I ended up doing
an I Ching (https://en.wikipedia.org/wiki/I_Ching) divination appliance,
that collects entropy by tuning two clock crystals on the STM32F103C8
against each other, and renders the resulting hexagram to a e-ink screen.

2



I Ching on E-Paper

Following Dmitry V. Sokolov’s Understandable RayTracing in
256 lines of bare C++ (https://github.com/ssloy/tinyraytracer/wiki/Part-1:-
understandable-raytracing) I hacked up a scruffy ray tracer. Mind you the
e-ink displays I was working with support just two colors, so I came up
with a dithering based approach.

Attempts at ray tracing

I then ported that ray tracer to the STM32F103C8 board, this time
using Mecrisp-Stellaris Forth, because I always wanted to do some
Forth hacking. That turned out to be quite the fun exercise given the
constraints of this particular micro-controller: 72 MHz core clock fre-

3



quency, 20 Kbytes of RAM, 128 Kbytes of ROM, and no FPU (https://
en.wikipedia.org/wiki/Floating-point_unit).

STM32 ray tracing

Forth was lots of fun. In some ways it is truly elegant, and fully
interactive given the compiler and interpreter run on the freakin’
micro-controller, snappy, even at 8 MHz. Below you can marvel at my
breakpoint-to-REPL debugger in six lines of Forth. Nevertheless, I feel I
saturated my hunger for Forth hacking for now.

false variable break-continue
: continue true break-continue ! ;
: break

cr ." Breakpoint hit"
cr begin cr query interpret ." ok." break-continue @ until
cr false break-continue ! ;

Forth breakpoint-to-REPL debugger

4



Designing a CPU, and an ISA, and an assembler,
and a compiler!

Continuing the hardware theme, I decided I wanted to learn Verilog and
what better way to learn than to design and implement your own tiny
CPU core and ISA?

A fledgeling CPU architecture and ISA

While I think the ISA turned out OK, my first core design isn’t very
good as could be expected. I’ll have to re-architect this one to get it to
synthesize on a real FPGA. It does however simulate fine in Verilator
already, and that’s good enough for quite a test drive.

And its already somewhat fully featured too, at least conceptually.
I made a branch predictor, instruction and data caches, an ALU, and a
load/store unit.

Debugging my puny branch predictor

5



To play with my core, I had to write an assembler for my brand
new ISA of course, but I didn’t stop there. Learning about SSA based
compilers was high on my bucket list, so I built my first compiler for a
subset of Lua targeting my fledgeling architecture.

Compilers are quite the rabbit hole! I ended up implementing func-
tion calls, call inlining, code folding, dead code elimination, structs and
arrays, and a simple compile-time type system. And while its still in a
very early stage of development, it kind of works nicely? I can compile
and assemble non-trivial programs, and correctly run them on my CPU
core under Verilator. How cool?

Below is a test program and its compiler output, just to show off. I
can’t wait to get back to hacking on this next time I can free up some
significant time!

function foo (a, b)
local sum = 0
for i = a, b do

sum = sum + i
end
if sum > 100 then

return bar(sum)
-- return -sum

else
return sum

end
end

function bar (x) return baz(x) end

function baz (x) return -x end

function main ()
return foo(1, 100)

end

Non-trivial Lua program

6



k r0 @main
jmpl r0

@main:
k r1 0
k r2 100
k r3 1
k r4 1
L1:
cmps r5 r2 r4
jge r5 >L2
jmp >L3
L2:
add r1 r1 r4
add r4 r4 r3
jmp <L1
L3:
k r4 100
cmps r4 r4 r1
jge r4 >L4
jmp >L5
L4:
mov r0 r1
ret r29
L5:
k r4 0
sub r0 r4 r1
ret r29

Compiler output for our non-trivial Lua program

7


