
Experimental Meta-Programming
for Lua

Max Rottenkolber <max@mr.gy>

Friday, 18 December 2015

Working on Snabb Switch (https://github.com/snabbco/
snabbswitch) has made me appreciate the Lua (http://www.lua.org/
) programming language quite a bit, and a JIT compiled (https:/
/en.wikipedia.org/wiki/Just-in-time_compilation) implementation
of the language, called LuaJIT (http://luajit.org/), specifically. Lua
is a neat little programming language. Simple enough that you can
learn to use it effectively in a matter of days, yet surprisingly power-
ful: higher-order functions with language support for multiple return
values and an ubiquitous structured data type—a hybrid between a
sparse array, a hash table and prototype objects1—make Lua a breeze
to hack in. LuaJIT is a ridiculously pragmatic programming language
implementation: because of Lua’s simple semantics, its “just-in-time”
compiler is able to generate insanely fast native code. Additionally, Lu-
aJIT provides a sophisticated C FFI (http://luajit.org/ext_ffi.html)
that not only makes it trivial to call C functions, but also allows you
to make very effective use of C data structures within Lua programs.
In fact, LuaJIT makes using C structures so seamless, you can even de-
fine Lua methods on them. I have been thoroughly impressed by how
Snabb Switch hackers can write elegant high-level code in one situation,
and craft super-efficient hot paths, where the budget is literally mea-
sured in “instructions per packet”, in another, all in the same language!

At the same time, I am a big fan of Common Lisp. When I am in
the position to dictate a programming language, I will choose Com-
mon Lisp, and usually, when I have to use something other than Com-
mon Lisp, I start to miss it quickly. Interestingly, Lua has been able to
elude my dissent, and LuaJIT has revealed itself as an especially good fit
for the Snabb Switch project. Still, as a lisper I sometimes wonder, what if
I could write macros? What if Lua’s syntax was based on S-expressions?2

As for LuaJIT’s FFI extension, with power comes responsibility. It is not
very hard to make LuaJIT produce segmentation faults when dealing
with foreign objects. Null-pointer dereference, “use after free” bugs, its
all fair game when using the LuaJIT FFI extension. Maybe, the safety

1



hazards could be isolated using macros. I thought about that for a
while, and remembered how I had enjoyed using Parenscript (https:/
/common-lisp.net/project/parenscript/) to meta-program Javascript
in the past. Parenscript is impossible to use unless you know your
way around both Javascript and Common Lisp, but still it enhanced my
Javascript experience notably. I figured, why not try something similar
for Lua?

• 1. “Prototype” as in prototype based object orientation.

• 2. Also, what if there wasn’t as much of a expression/statement
dichotomy? But I digress. :-)

S-expressions and Macros for Lua

S-Lua (https://github.com/eugeneia/s-lua) is an experiment in wrap-
ping Lua in S-expressions, adding macros and exploiting the hack for
meta programming profit. The S-Lua abstraction is designed to be as
thin as possible, only changing Lua’s syntax while leaving the seman-
tics of the language untouched. Additionally, it adds a macro expansion
time in between reading and loading code. S-Lua is aware of three types
of data: strings, numbers, and tables.1 It is implemented in Lua, and its
macros are implemented as Lua functions that return abstract syntax
trees represented by nested tables. It has no notion of a cons cell and
its symbols are just unquoted strings. Below is an illustration of S-Lua’s
syntax.

S-Lua Read as Compiles to

(a b c) {a, b, c} a(b, c)

(a (b)) {a, {b}} a(b())

2



% luajit -i s.lua

> prin1(read"(print 42)")

{

"print",

42,

}

> =compile(read"(print 42)")

print(42)

> sLua"(print 42)"

42

This does not get us far. We can now call functions, but other Lua con-
structs have dedicated syntax and cannot be expressed this way. These
built-in Lua constructs have to be implemented as S-Lua built-ins as
well, and S-Lua implements those as close to their Lua counterparts as
possible.

S-Lua Compiles to

(return a b) return a, b

(vector a b) {a, b}

(= (a b) c d) a, b = c, d

(local (a b) c d) local a, b = c, d

(do a b) do a; b end

(for (_ a) b c d) for _, a in b do c; d end

(function name (a b) c d) function name (a, b) c; d end

Some S-Lua built-ins in a nutshell.

Fair enough, the only thing missing now are macros. The other half
of S-Lua is comprised of a Common Lisp inspired back-quoting sys-
tem and a facility to install macros. The back-quote syntax is just a list
comprehension tool—or table comprehension in our case. It lets us con-
veniently build abstract syntax trees by splicing symbols, strings (quoted
symbols) and tables into other tables. The back-quoting syntax is really
just a sugar coating at the reader level that expands to quote, unquote
and splice forms at read-time. The former is implemented as a built-in,
and the latter two only have meaning within invocations of quote.

3



S-Lua Expands to Evaluates to

`a (quote a) "a"

`(a ,b) (quote (a (unquote b)) {"a", b}

`(a ,@(b c)) (quote (a (splice (b c)))) {"a", b, c}

S-Lua Compiles to

(defmacro ...) Similar to function but installs function as a macro

Now we have everything required to write our first macro. In Lisps
you can typically find the let form, which is a construct for lexically
binding variables around other forms. Below is a simplistic version of
let implemented in S-Lua. Instead of using Lisp-typical list processing
functions such as car, cdr or even mapcar, our let uses idiomatic Lua
table mangling to achieve its purpose.

(defmacro let (bindings ...)

(local (vars vals) (vector) (vector))

(for (_ b) (ipairs bindings)

(= (vars[#vars+1] vals[#vals+1]) b[1] b[2]))

(return `(do (local ,vars ,@vals) ,...)))

Basic let macro in S-Lua.

> loadFile("let.sl")

> princ(macroExpand(unpack(read"(let ((x 42)) (print x))")))

(do (local (x) 42) (print x))

> =compile(read"(let ((x 42)) (print x))")

do local x = 42; print(x) end

> sLua"(let ((x 42)) (print x))"

42

Fair enough, that works. And to my surprise, the code for let is not
even that ugly. It makes successfully use of array indexing and Lua’s
unary # operator, which is lucky since S-Lua has no concept of these

4



language constructs. From S-Lua’s point of view, these are just symbols.2

Equally lucky, it also manages to correctly use Lua’s special “vararg”
(...) symbol. Neither the macro nor the code it produces are especially
“lispy”, but rather close to idiomatic Lua. I think that is pretty neat.

• 1. Bug: S-Lua can not really read quoted strings, yet.

• 2. For dynamic indexing or use of the # operator it would require
the respective S-Lua built-ins.

A “Practical” Use Case

Snabb Switch has a core function packet.free used to deallocate foreign
C structures that contain packet data. I recently wrote a bug (https://
github.com/SnabbCo/snabbswitch/pull/664) in which I dereferenced a
pointer to a packet that was already freed, leading to a segmentation
fault. That made me think about “defensive programming”, and if we
could somehow retain at least memory safety in this scenario. I imagined
a macro that would free a packet in a place and then discard its pointer,
to eliminate the hazard of dereferencing it another time.

(defmacro pfree (place)

(return `(do (packet.free ,place)

(= ,place nil))))

pfree frees the packet in place.

> =compile(read"(pfree p)")

do packet.free(p); p = nil end

The pfree macro might be silly, and there are other solutions to this
problem such as boxing the packet pointers, but it achieves something
that can not be replicated in plain Lua: it does not operate on a value, but
instead expects its argument to be a place—a symbol denoting a variable
or object slot from which a value can be read and assigned to.

But is it any good?

S-Lua has some advantages over Parenscript: because it is implemented
in its target language, using it does not require semantic understand-

5



ing of yet another programming language. While Parenscript forces you
to semantically understand three languages—Javascript, Common Lisp
and Parenscript itself—S-Lua only requires you to understand Lua and
its own semantics, which are arguably marginal. Another cool thing is
that S-Lua can dynamically compile code into a running LuaJIT process
using loadstring. I am not exactly sure what the performance impli-
cations of loadstring are—e.g. if the resulting code will be JIT com-
piled—but in theory LuaJIT should be able to optimize the code without
restrictions.

The downside to S-Lua—as felt by all source-to-source compilers—is
that it obfuscates compile- and run-time errors. There is no easy way to
make Lua errors meaningfully correspond to S-Lua source code. Only
further efforts can tell if there is a sweet spot between S-Lua trying
harder to produce corresponding code and restricting its use to a mini-
mum—punctually invoking S-Lua in a source code preprocessor could
leave most Lua code undisturbed. The mental overhead introduced by
S-Lua might be more than can be justified by the features provided by
it. In any case, it was a fun experiment!

6


