Erlangen: Introduction

Max Rottenkolber <max@mr.gy>

Sunday, 4 December 2016

Erlangen (https://github.com/eugeneia/erlangen) brings distributed,
asynchronous message passing to Clozure Common Lisp (http://
ccl.clozure.com/). It orchestrates Clozure CL processes (native threads)
using message passing (http://c2.com/cgi/wiki?MessagePassingConcurrency),
and encourages fault tolerant software architectures using supervi-
son trees (http://erlang.org/documentation/doc-4.9.1/doc/design _principles/
sup_princ.html). It is also transparently distributed, all its features work
seamlessly across IP networks. Thus, it can be used to build applica-
tions across multiple Clozure CL instances on different hosts. Erlangen
borrows many ideas from Erlang/OTP (http://www.erlang.org/), hence the
name. (Its a town!)

Clozure CL processes are comparatively heavy weight, preemptively
scheduled operating system threads, as opposed to Erlang’s coopera-
tively scheduled green threads. As such, processes are a scarce resource
on Clozure CL. Erlangen is based on the assumption that even with
only a limited capacity of concurrent processes, message passing and
supervision trees are still feasible features. While Erlang’s distribution
features are sometimes overlooked, they are meant to be a main focus of
Erlangen (but not of this article). Besides the overlap in features, termi-
nology, and name, Erlangen and Erlang/OTP are completely unrelated,
incompatible, and fundamentally different.

Agent 1 send 9 Agent2

Message

Erlangen equips each process with a mailbox, a list of links, and
a list of monitors. These upgraded processes are called agents. Agents
can send (http://mr.gy/software/erlangen/api.html#tsection-1-13) messages
to the mailboxes of other agents, and receive (http://mr.gy/software/
erlangen/api.html#section-1-9) the next message from their own mailbox.
Message delivery can fail when the target agent exited, the destination
mailbox is full (mailboxes are bounded FIFO queues), or due to network
failure. As such, delivery of any message to the target agent’s mailbox

1



is not guaranteed. Agents can supply a timeout argument to receive,
which will then signal a timeout error if no message is received until
the timeout is exceeded.

/—A Mailbox
send

Message 4

Vieerak Message 1
Message 2 ‘/ )
receive

Agents can also exit (using exit (http://mr.gy/software/erlangen/
api.html#section-1-6) or by returning normally), and send kill messages
to other agents. When an agent receives a kill message it exits imme-
diately, and the remaining messages in its mailbox are discarded. The
links and monitors of an agent are references to other agents. When an
agent exits it sends kill messages to all its links, and exit notifications
to all its monitors. Agents can use link (http://mr.gy/software/erlangen/
api.html#tsection-1-7) and unlink (http://mr.gy/software/erlangen /api.html#
section-1-16) to manage links and monitors. Unlike regular messages, kill
messages and exit notifications will never be lost in transit, and they are
prioritized so that they will be received before any pending regular mes-
sage. Unless the target agent exits before it receives the kill message or
exit notification, they are guaranteed to be delivered, eventually.

(linked) (monitor)
Agent i (R T > Agent 2 Agent 1 ———— » Agent 2

kill notice

Agent 1 /\ Agedt 2 Agent 1 /\ Agedt 2

kill kill

Agent 1 /\ Agent 2 Agent 1 /\ Agent 2



Finally, agents can spawn (http://mr.gy/software/erlangen/api.html#
section-1-14) new agents. spawn takes a nullary function for the agent’s
process to execute, and returns a reference to the newly created agent.
This reference can then be used to communicate or link with the agent.
Additionally, spawn can also link the caller and the new agent before the
new agent’s process starts. This is useful to avoid a basic race condition
where the child agent exits before the parent could link with it.

That covers pretty much all of the core functionality, but Erlangen
is an asynchronous programming framework for a synchronous pro-
gramming language, and that poses some problems. Our processes are
preemptively scheduled, and it is unsafe to stop them asynchronously.
Erlangen agents must call receive periodically, or else they become un-
responsive to kill messages. Specifically, blocking calls to input and out-
put routines, such as found in the Common Lisp standard, can pose
problems in some cases. For instance, imagine an agent that listens for
user input on an interactive input stream.

(spawn ’read-char)

The resulting agent would block until a character is available in
*standard-input*, and not respond to incoming messages, potentially
indefinitely. This is a big no-go. One solution is to implement non-
halting agents as event loops. Instead of blocking while waiting for a
single event, they continuously poll for multiple events like pending
input and messages. The select (http://mr.gy/software/erlangen/api.html#
section-1-12) macro helps to implement such an event loop. At its heart
is a pacing poll algorithm that takes naps when there is nothing to do,
thereby trading a little bit of initial latency for saved processor cycles
in times of low load. Given alternative, asynchronous input routines the
pathological case from before can be avoided using select:

(spawn (lambda ()
(select ((read-char-no-hang) (char)
char))))

This agent polls for new
input using the non-blocking read-char-no-hang while also receiving
pending messages. Since there is no :receive clause, all incoming mes-
sages are discarded (but kill messages will still cause the agent to exit).
When read-char-no-hang returns a non-nil object as its first value, the
clause’s lambda list (char) is bound to the return values, the body of the
clause is evaluated, and its result returned. In this case, char is returned,

3



and the agent exits subsequently with that value. To manage additional
types of events, we would add more clauses to select.

To summarize, agents need to be programmed with concurrency in
mind. Within the boundaries of the Erlangen framework, this will come
naturally by composing programs using the provided message passing
facilities. When faced with outside input, use of blocking routines may
not be acceptable. Sadly, this affects many of the standard Common Lisp
I/0 routines, and Clozure CL’s socket stream extension is only of lim-
ited help, too. Asynchronous I/O libraries like IOLib (https://common-
lisp.net/project/iolib/) provide a way out.

If you are interested in this framework, you are welcome to create
an issue on GitHub (https://github.com/eugeneia/erlangen /issues), or shoot
a mail to me at max@mr.gy (mailto:max@mr.gy). Let me know what you
think!



